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Abstract  

In complicated electromagnetic environments, the "Four-Anti" capabilities of radar and 

highly efficient signal processing approaches are crucial. A new radar system with a randomly 

transmitted signal and a compressive sensing imaging method based on random chaotic sequence 

(RCS)are proposed. The randomness and statistical independence of the radar waveform are 

proved. Combined with the imaging model ofradar, a random chaotic sensing matrix (RCSM) is 

presented and proved to satisfy the restricted isometry property (RIP) with overwhelming 

probability. Numerical simulations comparison with other random matrices are conducted and 

demonstrate that the performance of these sensing matrices are almost the same. However, the 

RCSM can be easily implemented in hardware and is more suitable for scenarioswhererequire 

security and strong anti-jamming ability. 
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1. Introduction 

Compressive sensing (CS) has become an increasingly important research field in applied 

mathematics, computer science, and electrical engineering [1-5]. One of the fundamental tasks in 

CS is to design a sensing matrix that is sufficient to ensure the exact recovery of the original signal 
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frommuch fewer measurements. Many properties and characteristics of sensing matrixare 

presented to ensure a unique and stable signal reconstruction [6-8]. Depending on the construction 

method, sensing matrices can be divided into two categories: the deterministic matrix and the 

random matrix, the latter has been certified to satisfy RIP with high probability. Unfortunately, the 

fully random matrixis sometimes impractical to implement in hardware. 

Chaos is a kind of phenomena arises in deterministic nonlinear dynamical system, which is 

similar to random signal. This property motivates us to employ a chaotic system in CS. Linh-

Trung et al. [9] adopted a chaos filter to construct the sensing matrix. Yu et al. [10] proposed 

constructing the sensing matrix with a chaotic sequence and demonstrated that this type of sensing 

matrix satisfies the RIP with overwhelming probability. Felix Krahmer et al. [11] presented a 

bound for the suprema of chaotic processes, which improved the estimates for the RIP of 

structured random matrices. Kafedziski et al. [12] demonstrated that Chua and Lorenz chaotic 

sequences are suitable for sensing matrix. However, the intrinsic determinacy of such systems 

determines the internal structure and determinacy of chaotic sequences, and, strictly speaking, no 

truly random sensing matrix is available by these approaches. 

In view of such cases, we propose to employ a random chaotic sequence (RCS) to generate a 

sensing matrix. First, we evaluate the randomness and statistical independence of the RCS and use 

it to construct the random chaotic sensing matrix (RCSM) for CS. Then, the RCSM is shown to 

satisfy the RIP with overwhelming probability. Several numerical simulations are presented to 

demonstrate the efficiency of the RCSM. The RCSM has a similar performance to that of the 

common sensing matrices. 

 

2. The fundamental theory of CS 

Let N

sx R  be a discrete signal, given an orthonormal basis matrix or a frame 
N NR  , and 

sx can be represented in terms of   as 

sx             (1) 

With only k N nonzero entries in 
NR , we call sx  a k -sparse signal under  . 

Compressive sensing can be viewed as a linear measurement 

s sy x n             (2) 

where 
M NR   is called the sensing matrix, M

sy R  ( M N )is the measurement vector, 

and n  represents additive noise. By combining (1) and (2) we obtain 
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s sy x n n n      
       

 (3) 

where  is an M N  matrix [13]. When   satisfies theRIP,  can be recovered from 

sy  with overwhelming probability by solving 

1 2

min s.t. sl l
y    

       
 (4) 

where 
1l
 denotes the 1l -norm,  is an upper bound on the size of the noise contribution, 

and
2l

n  . 

 

3. Random chaotic sequence and its statistical characteristics 

3.1 Random chaotic sequence 

 2sin 2n

nx  has been proved to be the exact solution for  1 4 1n n nx x x   , which is a 

well-known Logistic map [14-17]. The exact general solution to many other maps can be 

expressed as  n

nx P Tk , where  P t  is a periodic function with the period T ,   is a real 

number, and k  is an integer. In this paper, we investigatethe randomness and statistical 

independence of the sequence 

 cos 2 n

nx z
         

 (5) 

where 1 z R  . 

Suppose that /z p q ,where p  and q  are relatively prime integers. It can be proved that 

given the sequence 0 1, , , mx x x  generated by Eq.(5), the value of the next point 1mx   is uncertain 

because it can take q  different values.Fig.1 shows the first-return map of sequences generated by 

Eq. (5) with different values of z . 

 

(a) (b) 

Fig. 1. First-return map produced by Eq.(5). (a) 13 / 5z  ; (b) z   
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Let us define the sequences parameterized by integer k  as follows: 

 ( , )

0cos 2

n

k m m

n

p
x q k

q
 

  
   

   

         (6) 

We have 
0 1 nx x x    for all n m  because 

( , )

0 0cos 2 2 cos 2

n n

k m n m n

n

p p
x kp q

q q
  

      
        

                

 (7) 

However, the next value 

 1 1

( , )

1 0cos 2 2

m m

k m

m

p p
x k

q q
 

 



  
   

   

         (8) 

can take q  different values. Thus, ( , )k m

nx  is forward-unpredictable.It can be proved that ( , )k m

nx  

is also backward-unpredictable by defining the sequence families 

 ( , , )

0cos 2

s n

k m s m

n

q p
x q k

p q
 

    
     

     

         (9) 

Given the sequence 1, , ,s s s mx x x  , 1sx   is unpredictable because 

 
1 1

( , , )

1 0 0cos 2 cos 2 2

s s m
k m s m

s

q p q q
x q k k

p q p p
   

 



      
         

       

              (10) 

Consequently, 1sx   has p  different possible values. When z  is an irrational number, the 

future and past points can take infinite possible values. Therefore, such a sequence is truly random. 

3.2 Statistical independence 

nx  generated by Eq. (5) has the invariant density    21/ 1x x   . The m -th moment of 

nx satisfies   0m

nE x   if m  is odd and 

  2

2

m m

n

m

E x m


 
 
 
          

          (11) 

if m  is even. 

It has been proved that the sequence generated by Eq. (5) is statistically independent for a 

transcendental value of z , but this is not true for algebraic numbers [18]. However, the high-order 

correlations with sampling distance can be used to measure the independence. We have the 

following lemma. 

Lemma 1Suppose that  1, , , ,n n n kX x x x   is the sequence generated by (5), given the 

sampling distance d , for any integer 0 10 , dm m z  , we have 
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     0 01 1m mm m

n n d n n dE x x E x E x                  (12) 

Proof:If im  is odd, the right-hand side of (12) is equal to 0. For the left-hand side, 

considering that  cos / 2j je e    , we have 

   

   

 
 

0 01 1

0 1

0 1

0 1

1

0 0
1

1

0

1 1

cos 2 cos 2

i i

m mm m

n n d n n d

m mn n d

m m
m m n n d

n n d
i i

E x x x x x dx

z z d

z z z




  

  

 




  


 





 
  

 





  

               (13) 

The last equation uses the fact that  
1

2

0

j ke d k   , with   0k  if 0k  and 1 otherwise. 

 represents summation over all possible combinations with 1i   . All possible cases are 

analyzed below: 

(i) Both 0m  and 1m  are odd: 0

1 0i

m

i n m   and 
 

1

1 1
i

m

i n d
 

  . Hence,
 

0 1

1 1 0
i i

m mn n d

i n i n d
z z 

  
    ; 

(ii) Either 0m  or 1m is odd and the other is even. Without loss of generality, suppose that 0m  

is odd and 1m  even. Under this scenario, it is possible that  
1

1 0
i

m

i n d
 

  , whereas 

0

1 0
i

m

i n  ,hence,
 

0 1

1 1
0

i i

m mn

n n di i
z  

 
   . 

Then, the left-hand side of (12) is also equal to 0. 

(iii) Both 0m and 1m are even numbers,after a common combinatorial calculation, we obtain 

   0 10 1
0 1

0 1

2
/ 2 / 2

m mm m

n n d

m m
E x x

m m

 



  
   

  

                (14) 

Comparing equation (14)  with equation (11), we obtain (12). 

Lemma 1 implies that nx  and n dx  are statisticallyindependent when the sampling 

distance d  . If d  is sufficiently large, for instance, 10d   with 13/ 5,z   we have 

     0 01 1m mm m

n n d n n dE x x E x E x  for all 0 1, 14117m m  ,then, nx and n dx  can be considered 

approximately independent, as illustrated in Fig.2. 

 

(a)                             (b) 
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(c)                       (d) 

Fig. 2. Probability density. (a)  
n

P x and (b)  
n d

P x


; (c) and (d) joint probability density  ,
n n d

P x x


 

for sampling distance 5,10d   

 

4. Random chaotic sensing matrix for the radar system 

Let    , , ,n n d n kdx k x x x   be the chaotic sequence extracted from the sequence generated 

by (5) with 13/ 5, 10z d  , which is used as the transmitted radar signal and possessesthe 

characteristics of being fully random and statistically independent. 

According to the principles of radar imaging, it can be assumed that the returned signal 

( )y t can be modeled as the convolution of the transmitted waveform ( )x t with the reflectivity of 

the observed scene ( )t [19]: 

( ) ( )* ( ) ( ) ( )y t x t t x t d    



        

          (15) 

The corresponding discrete version can be written in matrix form as 

[1] [1] 0 0

[2] [2] [1] 0
[1]

[2]
[ ] [ ] [ 1] [1]

[ 1] 0 [ ] [2]
[ 1]

[ ]
[2 2] 0 0 [ 1]

[2 1] 0 0 [ ]

y x

y x x

y N x N x N x

y N x N x
N

N
y N x N

y N x N









   
   
     
     
          
     

     
          
   

   

               (15) 

or more compactly asY X   . Compared with Eq. (3), formally speaking, CS is well-suited 

for the radar system. Our interest is how to design the sensing matrix with the RIP based on X . 

The algorithm implementing procedure of CS radaris shown in Fig.3. 
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transmitted waveform 

x[n]

convolution matrix

X

sensing matrix 

measurement vector

ys

reconstruction 

algorithm

x[n]

X

Y

selecting the rows of

X stochastically

convex 

optimization  

(a)          (b) 

Fig.3. Algorithm implementing procedure of CS radar.  

(a) algorithm flowchart; (b) algorithm diagram 

Let : N M

MD R R  be an operatorthat restricts a vectorto its entries in T  

and  1, 2, ,T N be a set of cardinality M . We construct the random chaotic sensing matrix 

M NR  by utilizing the matrix X  in the following manner: 

MD X 
          

          

(16) 

Theorem 1 The RCSM  in Eq. (17) satisfies the RIP with probability 

 1Pr 1 2exp C M    for any  2 log /M C k N k      with  0,1k  , where 1 2,C C depends 

only on k . 

To prove Theorem 1, we introduce Lemma 2. Let  1,2, , N  denote the set column 

indices and  be an M    sub-matrix of with indices . 

Lemma 2 Given a matrix 
M NR   whose entries extracted independently from a certain 

distribution, for any set of indices   with k M   ,  0,0.2  , such that 

   
2 2 2

2 2 2
, 1 5 1 5w R w w w 



                       

(17) 

withhigh probability 

  
12

Pr 1 2 exp
5

k

c M


 
    

 
                (18) 
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where R


 denotes the set of all vectors in 
NR  that are zero outside ofT . 

Using Lemma 2, it is easy to prove Theorem 1. 

According to Lemma 2, the RCSM will fail to satisfy Eq. (18) with probability 

12
Pr 2 exp

5

k

k

k

c M




    
      

   

                 (19) 

for each 
kR , where  0,1k  . There are N

k

 
 
 

k NR R ,thus,the RCSM  will violate the RIP 

with the small probability 

12
Pr 2 exp

5

12
2 exp log log

5

2

k

k

k

k

k

Q

N
c M

k

eN
c M k

k

e









     
         

     

   
       

    



                (20) 

Subsequently, for a fixed 1 0C  , whenever    1 / log /k C M N k    , we 

obtain 2Q C M   if       2 1/ 5 1 1 log 12 / / log /k kC c C N k       . 

 

5. Numerical experiments 

The scattering characteristics of a radar target can be represented by several scattering centers 

in high frequency. To verify the validity of the proposed compressive sensing radar imaging 

system in this paper, a plot of a radar scene with 52 scatters with different reflectivities is shown in 

Fig. 4, and thecorresponding vectorized version is shown inFig. 5. The sparsity of the signal is 

52k  . Considering the effect of thermal noise in the radar receiver, we add Gaussian noise to the 

initial signal with a signal-to-noise ratio SNR=40. The radar parameters are shown in table 1. 

Table 1. The radar parameters 

carrier frequency bandwith pulse duration sampling frequency 

2 GHz 250 MHz 2.5 μs 1GHz 

 

The scene vector is sampled by the RCSM with dimensions of 500 2500 , i.e., a sampling 

rate of 0.2. sy is the measurement vectorshown in Fig. 6. Subsequently, we reconstruct the signal 

*

sx via convex optimization technique illustrated in Fig. 7, and the recovered radar scene is 

compared with the original scene shown in Fig. 8. The corresponding recovery error is depicted in 

Fig. 9. Fig. 10 is the two-dimensional recovered radar scene. For comparison purposes, the RCSM, 

Gaussian sensing matrix (GSM) [20], Bernoulli sensing matrix (BSM) [21], and sparse random 
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sensing matrix (SRSM) [22] are used to sample the same scene vector with different measurement 

number M . The absolute error of recovery and the corresponding SNR are illustrated in Fig. 11 

and Fig. 12, respectively. With the same measurement number 800M  , the RCSM , GSM, BSM 

and SRSM are adopted to measure the scene vector with variational sparsity k , and the 

probability of successful recovery as a function of k is depicted in Fig. 13. The criterion of 

successful reconstruction is 
* 0.002s sx x  . 

 

 

 

Fig. 4. Sparse radar scene 

 

 

Fig. 5. Vectorized sparse radar scene 

 

 

Fig. 6. Measurement vector 
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Fig. 7. Recovered vectorized radar scene 

 

 

Fig. 8. Recovered scene compared with the original radar scene 

 

 

Fig. 9. Error of recovery 
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Fig. 10. Recovered sparse radar scene 

 

 

Fig. 11. Absolute error of recovery for different sensing matrices 

 

 

Fig. 12. SNRs for different sensing matrices 

 

 

Fig. 13. Probability of successful recovery for different sensing matrices 
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6. Discussion 

The RCS is an ideal radar waveform for its strong anti-interference ability, low probability of 

intercept, good electromagnetic compatibility. In contrast to random noise, the generation, 

replication and control process of the RCS are very easy. 

The CS radar offers a framework for the detection of sparse signals for radar with a high-

resolution. As we known, sensing matrix plays a key role in CS, currently， two kinds of 

problems exist in the design of sensing matrix． One is that the random sensing matrix is difficult 

to be realized by hardware．  The other is that the size of deterministic matrix cannot be 

arbitrary． To cope with these problems，a novel algorithm is proposed based on CS for random 

chaotic radar system. Projection for low dimension data is adopted instead of correlation; Signal 

recovery used to substitute pulse compression. In this algorithm, detected targets in scene satisfy 

the requirement of sparsity peculiarity, and sensing matrix is constructed by selecting the rows of 

convolution matrix stochastically. Furthermore, convex optimization method is applied to 

reconstruct target signals, and reconstruction error is significantly reduced and sidelobes are 

faithfully suppressed. 

 

Conclusions 

Connecting with the structure features of the radar imaging system, a new radar system and a 

sensing matrix based on a random chaotic sequence, which is fully random and statistically 

independent, are proposed. The RCSM is proved to satisfy the RIP with overwhelming probability, 

which guarantees exact recovery. Simulations of a sparse radar scene CS were performed, and a 

comparison among the RCSM, GSM, BSM and SRSM demonstrated that RCSM exhibits similar 

performance to the other methods, but the RCSM is easily implemented in hardware. 

The number of measurement and sparsity of the original signal affected the performance of 

reconstruction, the error of recovery becomes greater with the decrease of measurement number M , and 

the probability of successful reconstruction gets smaller with the increase of signal sparsity k , therefore, 

all of these should be taken into account in a practical application. 

In a word, as a new signal processing theory, CS provides great possibilities for overcoming 

inherent limitations of traditional radar, and has potential to resolve many problems associated 

with high resolution radar, such as high sampling rate, too many dada and difficulties of real time 

processing. 
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